Application of Adaptive Gridding in FUN3D for Simulation of Flow over a Nose Landing Gear

Veer N. Vatsa, Mehdi R. Khorrami and David P. Lockard

BANC II Workshop
Category 4: Partially Dressed Cavity Closed
Nose Landing Gear (PDCC-NLG)

7-8 June 2012, Colorado Springs, CO

Objectives

- Explore the use of adaptive grid capability in FUN3D code for simulating the flow over Gulfstream Nose Landing Gear configuration
- Develop a simpler grid generation process and reduce computational costs
- Compare the resulting solutions with the baseline solutions on manually enriched unstructured grids

Grid Adaption: Technical Background

- The grid adaption approach based on the "Metric Intersection" scheme described by Alauzet et al., and Loseille and Alauzet of INRIA and adopted in FUN3D unstructured grid flow solver
 - > Int. J. Numer. Meth. Fluids, vol. 43, pp. 729-745, 2003
 - > SIAM J. Numeric. Analysis, vol. 49, No.1, pp. 38-60, 2011
- Use vorticity based Hessian for grid adaption
- For unsteady problems, most restrictive estimate of the metric constructed over a time interval is used to resize grids
 - > Both refinement and coarsening permitted

Metric

General approach to define to anisotropic grid resolution

Metric Intersection: Schematic

Grid Adaption Process

- Generate an unstructured grid for solid surfaces and adjacent boundary layer regions
 - Current process does not refine surface grids need to start with adequate resolution for surface grids
 - Create a coarse initial volume grid, much simpler compared to creating fine grids with locally enriched grids in high gradient regions
 - Avoids need for apriori knowledge of flow field
- Run the FUN3D code in time-accurate mode on the initial coarse grid
 - Use vorticity based Hessians for metric construction
 - > Determine the most restrictive metric over a selected time interval
 - Use the metric from previous step in conjunction with adaption mechanics to resize grid cells
- Once a new grid is created, repeat the process for next cycle
 - > Repeat adaption until desired accuracy is achieved

Sample grid cuts

Comparison of Grids at Wheel mid-plane

Initial grid: 18M (adpt0)

Finer grid: 65M (adpt2)

Medium grid: 32M (adpt1)

Reference grid: 145M

Comparison of Grids at Wheel mid-plane – zoomed view I

Initial grid: 18M (adpt0) Medium grid: 32M (adpt1)

Comparison of Grids at Wheel mid-plane – zoomed view II

Finer grid: 65M (adpt2) Reference grid: 145M

Comparisons of Grids at Torque-arm cut

Initial grid: 18M (adpt0)

Finer grid: 65M (adpt2)

Medium grid: 32M (adpt1)

Reference grid: 145M

Comparisons of Instantaneous Density Contours along Torque-arm cut

Initial grid: 18M (adpt0)

Finer grid: 65M (adpt2)

Medium grid: 32M (adpt1)

Reference grid: 145M

Surface Pressure Comparisons (Starboard Wheel)

Surface Pressure Comparisons at Door (Rows: 5 and 7)

Unsteady data comparisons

Effect of Grid Refinement on Power Spectral Density Distributions - I

PSD levels improve with grid refinement

Effect of Grid Refinement on Power Spectral Density Distributions - II

Concluding Remarks

- Demonstrated grid adaption capability of the unstructured grid flow code FUN3D for simulating the unsteady flow over PDCC-NLG configuration
- Solution accuracy improves with successive grid refinements
- Proposed approach offers simplification of grid generation process for complex configurations
 - ➤ Start with coarse volumetric grids
 - Use the adaptive grid capability to enrich grids as needed
- Computed results on adaptive grids encouraging

Questions/Comments